If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-9t-21=-6
We move all terms to the left:
t^2-9t-21-(-6)=0
We add all the numbers together, and all the variables
t^2-9t-15=0
a = 1; b = -9; c = -15;
Δ = b2-4ac
Δ = -92-4·1·(-15)
Δ = 141
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-\sqrt{141}}{2*1}=\frac{9-\sqrt{141}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+\sqrt{141}}{2*1}=\frac{9+\sqrt{141}}{2} $
| y/7-6=8 | | 12x+5=7x-80 | | b-48=190 | | y=5+26 | | 45a+7=1536 | | 6x+8=5x+2=98 | | -8d+13=5d-52 | | -2(2x+5)=3(2x-6) | | 16+3x=3x+16 | | 250x+225=275+200x | | m+74=874 | | 1/4x-2+3x=3/2x+3/2x | | 5(x-1)=x-5 | | 3y+10+2y=50 | | 16+(r/2)=-11 | | 668=2-x+4/3 | | v-515=15 | | y-20=-77 | | 2f-5=4f-3 | | X+6=4(x-3) | | 45a=1536 | | 2r−8r+10r+–18=10 | | 23-3x/2=4 | | 5=9-k/9+10 | | w+211=980 | | -6(8-2y)=-120 | | 8x+20=85 | | -13+2z+19z=19z+9 | | -3(7+4x)=-81 | | n+(-5)=35 | | z-337=21 | | 5y=10+6y |